Report on Sustainable Development 2009 – 2010

ISCN-GULF Charter Report
Our Profile: The defining characteristics of our University are its multilingualism, its personalised approach to students and its international student and staff communities. The University of Luxembourg (UL) was founded in 2003, and was thus designed, right from the start, according to the Bologna system for higher education. One provision in the 2003 Law on the Establishment of the University of Luxembourg, which makes for particularly fertile grounds to promote sustainable development, is the promotion of interdisciplinarity as key organizing principle. The working languages of research, teaching, and the administration are French, German, and English. With a total of 45,000 students enrolled in the winter semester 2009–2010, we are a small and personable university: we offer a tutor system. In 2009, we hosted students of 96 different nationalities, with just under half of our students being of Luxembourg nationality. Most international students come from neighbouring EU countries such as France, Germany, Holland, and Belgium. In the academic year of 2010, a total of 2069 students enrolled were EU foreign nationals and a further 426 came from a wide range of countries outside the EU.

Organization: The Board of Governors decides upon the University’s general policies and strategies. It has 7 members, at least 4 of whom currently hold, or have held, a position of responsibility within a university. The University’s President, the Government Commissioner, a representative from the Teaching Body, and a Students’ Representative participate at meetings. Three Vice Presidents (one for each research, academic affairs, organisation and international affairs) and the Director of Administration report directly to the President of the University. A large share of the University’s budget is provided for by the Luxembourg government.

History of sustainability at the UL: In 2006, a group of staff formed the Working Group on Sustainable Development. Since 2008, this group under a new chair, expanded from eight to over fifty members and coordinated the development of the UL Strategic Action Plan on Sustainable Development (2010–2013) in a participatory process. The plan’s stated overarching goal is to foster learning, research, and action to address the complex environmental and social challenges we face. We would like to develop our campus into a living laboratory for technology and best practices, governed by a respect for natural resources and consideration for social equity. Our concept of learning in a community places active participation, practical experience, inquiry-based learning, and real-world problem solving at its centre. Accordingly, three overarching strategic goals are to foster research and teaching that:

- integrate with campus operation, planning, and management,
- connect diverse disciplines to explore the complexities of societal challenges, and,
- is applicable to practice to ensure social salience.

In March 2009, the university created a Call for Sustainable Development with a head, an administrative assistant, and the possibility to engage students contractually. The Call’s role is to see to the implementation of the action plan, involving students and staff. The Working Group on Sustainable Development that now includes members from all faculties, the administration, students, and other public research centres in Luxembourg, advises on, and contributes to, the activities of the call. The Call is actively contributing to work of key global networks like the ISCN and GULF.

Signatory of the International Sustainable Campus Network Charter: In July 2008, Rolf Tarrach, President of the University of Luxembourg, signed the ISCN-GULF Charter, which highlights the clear commitment of the University to set targets and to monitor and report on progress towards achieving these. The charter was developed by the International Sustainable Campus Network (ISCN) and the Global University Leaders Forum (GULF) under the co-ordination of the Head of Sustainable Development of the University of Luxembourg.

In 2009, the university operated on three campuses, while a future move to a new campus (Belval) is foreseen during the time period of the University’s next four year plan (2016–2020). As we are a very young university just starting activities on sustainable development, our priorities for 2008 and 2010 might be viewed as modest, though pragmatic. In the area of operations and planning, the priority was a first mapping of energy-use, establishing what data we can generate now and needs for developing more systematic targets, monitoring, and reporting on the present three campuses as well as for Belval. A second priority was to develop research projects to make our campuses more sustainable by fostering research at faculty level that can connect with campus operations and strategic planning. A third priority was to provide opportunities on campus for multi- and interdisciplinary learning. Fourth, we decided to seek integration in an international network on sustainable development and to organize public events on salient topics in Luxembourg.
1. FACILITIES, OPERATIONS AND PLANNING

Our goals

Our goals include the management, construction, and refurbishment of buildings in a resource-efficient manner, and a campus that teaches about best practices for improved use of natural resources and reduced waste. This requires an improved linkage between organisational strategies and the campus community. This can be achieved by combining environmental considerations in infrastructure development and management with clear communication and campaigns that foster adoption of best practices at the individual and institutional level.

CO2 emissions

Overall on-campus energy use has been increasing largely due to the rapid growth that this young University is experiencing (see Figure 1.1). However, energy-saving measures adopted in 2009 and 2010, including installation of movement-triggered lighting and improved heating regulation have resulted in leveling total CO2 emissions from energy used on campus (see Figure 1.2). For an overview on all measures adapted to reduce electricity-use, gas consumption and reliance on district heating in campus buildings in 2009 and 2010, please see Table A1 in the Annex. Thanks to these measures, the University has significantly reduced CO2 emissions per staff member and has not increased spending on electricity, in spite of its growth and a 20% price increase for electricity in 2009 (Table A1). In 2010, we have professionalised our on-campus energy-use monitoring plan. In the future, we will also take account of transport-related CO2 emissions. Towards this goal we have started developing a transport policy and survey to address one of our greatest challenges — the high level of individual car use for daily commuting of over 30 km (see Section 2 on research). The next step will be to develop targets for on-campus and transport-related emissions.

Waste

The University Engineering Research Unit is supporting communication and campaigns that foster adoption of environmental practices and regulations have resulted in leveling total CO2 emissions. Towards this goal we have started developing a transport policy and survey to address one of our greatest challenges — the high level of individual car use for daily commuting of over 30 km (see Section 2 on research). The next step will be to develop targets for on-campus and transport-related emissions. The University has a group of experts from the UL and CRP Henri Tudor that are working to develop targets for on-campus and transport-related emissions.

Towards more sustainable catering — fair trade and regional produce

The UL uses recycled paper. To facilitate waste sorting, recycling and reusing, triple garbage bins have been placed in all offices and in public areas. All waste produced by the University is recycled or reprocessed, except household waste. An infrastructure for recycling of biological materials in household waste in Luxembourg is being developed, thus this situation is expected to be improved next year. Information campaigns have been carried out in offices and laboratories both on waste separation and recycling, as well as on measures to save paper and printing toner. Waste management and prevention plans also aim at limiting the purchase of new raw materials. Starting in 2010, the University has implemented a new system to monitor and produce annual reports on waste management aiming for continued waste reduction over time. Two years of data will be required for defining targets.

The future campus on the Cité des Sciences

The government has passed a decision to develop a ‘Cité des Sciences’ (City of Sciences) on a direct industrial site formerly used by Arcelor Mittal. The Cité shall house ‘Le Fonds Belval’, a public organisation, which was founded in response to a 2002 legal decree as constructor of public structures on site. Under the coordination of the UL, Working Group on Sustainable Development, in 2008, a group of experts from the UL, and CRP Henri Tudor prepared a position statement setting goals and providing recommendations and targets for efficient energy- and water-use (Table 1). The recommendations apply to planning, construction, and operation, and result in a more formal involvement of UL experts at all stages. The Fonds Belval has adopted the UL position as official guidance in architectural competitions and research. The University Engineering Research Unit is supporting three projects with research on energy-efficiency with a focus on modelling temperature and comfort during the hotter summer months. The University has also developed a position statement on eco-certification of buildings. It remains, however, unclear how this will be funded. The Fonds Belval has now started a process with selected experts to develop sustainability assessment criteria for judging the construction outcomes and future operation of buildings in the Cité des Sciences. Some of this building plans promise to be state of the art in environmental design. For example, the ‘Maison du Savoir’ (House of Knowledge) is the flagship project with a surface of about 60,000 m² which is designed to link the future identity as a site knowledge production with its past as a steel production centre (see Figure 1.3). The building has an outer hull of steel that reflects recent insights in environmental design to optimise solar loading and provide isolation throughout the year. Construction work began on 28 March 2009.

Table 1 Overview on requisites and targets for office buildings on the future campus Belval

<table>
<thead>
<tr>
<th>Topic</th>
<th>Requisites</th>
<th>Criteria/Targets*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Comfort</td>
<td>• Reliance on natural methods for thermal comfort, light and air quality where possible</td>
<td>• Minimal deployment of building technologies</td>
</tr>
<tr>
<td></td>
<td>• Acceptable temperature range (20-26 °C)</td>
<td>• 20-26 °C **</td>
</tr>
<tr>
<td></td>
<td>• Isolation: Transmission-coefficient of the mean temperature of the facade</td>
<td>• U = 0.2-0.23 W / m²·K</td>
</tr>
<tr>
<td></td>
<td>• Office lighting</td>
<td>• Max. 500 lux</td>
</tr>
<tr>
<td>2) Energy</td>
<td>• Target efficiency for final district energy consumption in office buildings:</td>
<td>• 14 kWh/m²·a*</td>
</tr>
<tr>
<td></td>
<td>• Target efficiency for electric power consumption in office buildings:</td>
<td>• 6 kWh/m²·a*</td>
</tr>
<tr>
<td></td>
<td>• CO2 emissions associated with ICT operations</td>
<td>• 0 g CO2/kWh</td>
</tr>
<tr>
<td>3) Renewable energy</td>
<td>• Foresee installation of PV systems on all roof spaces that are not green.</td>
<td>• PV electricity production > needs for ICT operations</td>
</tr>
<tr>
<td>4) Construction materials</td>
<td>• Evaluation of building materials with the life cycle assessment-balanced method</td>
<td></td>
</tr>
<tr>
<td>5) Water</td>
<td>• Water saving fixtures and appliances</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Substitution of drinking water with rain water for operation of a centralised cooling system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Green roofs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No groundwater evacuation pumping</td>
<td></td>
</tr>
</tbody>
</table>

* For calculations reference norms based on Directive 2002/91/EC are acceptable. Reference dimension: Brutto volume of the building. **Future users will accept if temperatures exceed this range during a maximum of 15 hours per year during office hours.

Figure 1.1 Staff and student increase 2007 – 2010

Figure 1.2 Total UL CO2 emissions from on-campus energy-use 2007 – 2010

Figure 1.3 The future ‘Maison du Savoir’ in the ‘Cité des Sciences’
2. EDUCATION AND RESEARCH

Our goals

Our main goal is to build capacity within and beyond the campus community to propose solutions for complex and interlinked environmental and social issues and to assume to individual and collective responsibilities to address these. This requires problem-centred research and teaching, which transcends disciplines, connects with practical know-how, and relies on new participatory methods to find local solutions reconciling trade-offs and conflicts of interest.

Education – offering access to courses from multiple disciplines to all students

To create opportunities for learning of diverse disciplines, we are opening access to courses of general interest in a wide range of disciplines to students from all faculties. Starting in September 2010, the Cell has worked with study directors to compile a catalogue of 33 such courses for the winter semester 2010/2011. We are progressively extending the range of degree programmes in which students have the option to enrol in and gain ECTS points for Open Courses that count towards their degree.

Education – offering interdisciplinary courses to all students

The Head of Sustainable Development coordinated the development of a first interdisciplinary Cross-Faculty Course, an Open Course that is not associated with any specific degree programme. The course entitled 'Science and citizens meet challenges of sustainability' explores the responsibilities that citizens and science can assume in a knowledge society. The course is open to students from all degree programmes, representatives of businesses, NGOs, and government engaged in life-long learning, and will start in the summer semester of the academic year 2010/2011. It yields a ECTS or a certificate (See Figures 2.1 and 2.2).

Research – developing a UL sustainable transport policy

Currently, the transport sector is responsible for 36% of the Luxembourg Carbon footprint. Sustainable transport is one of the most serious challenges in the planning of the new campus in the Cité des Sciences. It will require an integrated approach to planning that considers implications across a range of policy sectors, and that relies on participation of diverse stakeholders and future users. The main challenge we face is the high level of individual car use for daily commutes of over 30 km, each user emitting over 25 CO2 per year. The Sustainable Development Cell together with UL Geography researchers are jointly developing a UL policy on sustainable transport policy. The draft policy proposes a wide range of concrete measures and targets leading to a reduction of automotive km per person, and fostering public transport and low-impact alternatives such as walking and bicycling for the commute to the University by students and staff. The public transport centres CEPS and Henri Tudor have joined the project. Priorities for implementation and targets will now be defined in a participatory process. A Travel Survey is being developed to estimate the CO2 emissions related to transportation, to refine the policy recommendations, and to serve as a tool to monitor the progress of implementation over time. Results from a first pilot survey on our transport challenge are provided in Figures 2.3 and 2.4. Measures already adopted in view of reducing transport based CO2 emissions include a student pass for public transport at reduced price; and rules for business related travel, declaring that for distances of less than 500 km, 1st class train tickets will be reimbursed while air travel under 500 km will not be funded at all. Further, car rental expenses will only be reimbursed if the distance is longer than 100km and if transport was shared with at least one more person (see also Table A2 in the Annex).

Towards Carbon-neutral ICT operations

We are developing together with students a student-led interdisciplinary research project towards attaining Carbon-neutral ICT operations, which counts towards the students’ degrees. The project has three research strands:

1. To reduce energy consumption from our ICT equipment and operations: Students from the Bachelor or Masters in Information and Computer Science, and a PhD student and PostDoc team from the UL Green ICT project have started to work together to plan and implement measures to increase energy efficiency (See Annex 1 Table A2).

2. To develop a monitoring system for ICT-related energy consumption: Students from the Masters in Sustainable Development – Energy and from the Bachelor in Engineering will develop and implement a system to continuously measure, record, analyse and display energy consumption from our ICT operations.

3. To design and implement a business model for renewable energy from PV: Students from the Masters in Entrepreneurship and Innovation will develop a business model to rent out roof space in Kirchberg to a University member or citizen’s group that invests in photovoltaic cells and sells the renewable energy output back to the University for its ICT operations (indirectly through involvement of the grid-energy provider if need be). A transportable PV system would be purchased that could be transferred to Belval at the time of the move. We have set out to empower our students in a student-led interdisciplinary research project that counts towards the respective degrees, to work towards this goal in an interdisciplinary student team.
3. SOCIAL COHESION AND OUTREACH

Our goals

Our goals in this area include the development of participatory projects and workshops on local environmental and social issues with engagement from local government, industry, and organized civil society, and to provide input to the Charter’s principles and reporting mechanism. The President of the UL signed the Charter in July 2010. The Head of the Sustainable Development at the University of Luxembourg continues to act as Co-Chair of an ISCN Working Group concerned with integration of research, teaching, and campus improvement.

International Outreach – Joining the ISCN, developing and signing the ISCN Charter

The UL Cell for Sustainable Development coordinated the development of the ISCN Charter (in parallel with the development of the UL strategic action plan). 21 Universities of the Global University Leadership Forum, including Harvard, MIT, ETH Zurich, Oxford and Cambridge (INSEAD) and Tsinghua University signed the ISCN-GEF Charter in January 2010, and committed themselves to the Charter’s principles and reporting mechanism. The President of the UL signed the Charter in July 2010. The Head of the Sustainable Development at the University of Luxembourg continues to act as Co-Chair of an ISCN Working Group concerned with integration of research, teaching, and campus improvement.

International Outreach – Expanding ISCN’s reach further into Asia at the 2010 World Expo

On 27 and 28 July 2010, the University of Luxembourg organised an international symposium on sustainable campus development in the Luxembourg pavilion at the Expo in Shanghai, China. The Symposium ‘Better Campus, Better City: learning for a sustainable future’ asked questions central to the Expo’s theme ‘Better City, Better Life’, what can Universities do to get us there? The symposium was co-organised by Tongji University and the International Sustainable Campus Network (ISCN). The Luxembourg Fonds National de la Recherche also provided substantial support. The General Planner of the Expo 2010 and Dean at Tongji University,

Promoting interdisciplinary thinking and action in Luxembourg

On 29 October 2010, the University of Luxembourg hosted a joint workshop with the European Research Council (ERC), Europe’s leading research council on the ‘Evaluation of Interdisciplinary Research’. Society’s complex problems, including equity and environmental issues, are often better understood from the perspective of several disciplines, rather than just relying on models steeped in assumptions of just one disciplinary perspective, such as economics. Challenges to interdisciplinary research are manifold. Questions to be explored include:

1. What is the meaning of ‘success’ in interdisciplinary research, what might, and what might not be achievable?
 - The workshop was co-hosted and funded by the Fonds National de la Recherche and co-organised by the University’s Cell for Sustainable Development. The President of the ERC, Prof. Helga Nowotny, highlighted the need to develop students’ capacities for interdisciplinary thinking and action, towards this goal she called for a reform in the undergraduate curriculum to provide learning opportunities to work with and integrate across languages and associated systems of thought of several disciplines.

2. Design for exchange: Exchange between campus and city requires well-connected infrastructures and social networks. A prerequisite for exchange in practice is socially robust design processes to structure the interface between campus and city, which engage representatives of the University, city communities, planners and engineers.

3. Governance for exchange: Japanese research suggests that local and regional policies for environmental conservation, remediation, and economic revitalisation work well if they rely on formalised Town-University Partnerships that are based on legal agreements and involve annual reporting. The best performing projects combine environmental conservation, social integration and spatial planning considerations. Successful examples include projects promoting low-carbon mobility, gardening in the city, and the establishment of green businesses helping social inclusion of socially disadvantaged.

4. Develop infrastructures that teach: The best building technology fails without user engagement. Eye-catching demonstration projects of environmental technologies and visible monitoring efforts can be combined with other awareness raising design measures to foster behavioural change at the individual and institutional level. Examples include visible solar panels, monitoring screens, visible recycling. Development of such measures can be combined with research and teaching.

5. Empower students to act as change agents on and beyond campus: Student projects can address local issues and be combined with research and teaching. Examples include visible solar panels, monitoring screens, visible recycling. Development of such measures can be combined with research and teaching.

6. Combine experiential learning with civic engagement projects: Student projects can address local issues or emergency help in disaster areas. For example, Hong Kong University developed student projects to help re-structuring in Haiti.

7. Empower students to act as change agents on and beyond campus: Students at the conference requested well-advertised and accessible offices and funds to help them launch campus sustainability projects. Information on campus infrastructure and operations should be accessible to students. They also recommended that university management should seek to establish student-run sustainability audits of Universities – and to make available a tool kit for students to run such audits.

Figure 3.1 Symposium ‘Better Campus, Better City: learning for a sustainable future’, Luxembourg Pavilion, 2010 Expo Shanghai, China

Figure 3.2 Symposium Recommendations for Connecting Sustainable Campus and City Development

1. Design for exchange: Exchange between campus and city requires well-connected infrastructures and social networks. A prerequisite for exchange in practice is socially robust design processes to structure the interface between campus and city, which engage representatives of the University, city communities, planners and engineers.

2. Governance for exchange: Japanese research suggests that local and regional policies for environmental conservation, remediation, and economic revitalisation work well if they rely on formalised Town-University Partnerships that are based on legal agreements and involve annual reporting. The best performing projects combine environmental conservation, social integration and spatial planning considerations. Successful examples include projects promoting low-carbon mobility, gardening in the city, and the establishment of green businesses helping social inclusion of socially disadvantaged.

3. Develop infrastructures that teach: The best building technology fails without user engagement. Eye-catching demonstration projects of environmental technologies and visible monitoring efforts can be combined with other awareness raising design measures to foster behavioural change at the individual and institutional level. Examples include visible solar panels, monitoring screens, visible recycling. Development of such measures can be combined with research and teaching.

4. Combine experiential learning with civic engagement projects: Student projects can address local issues or emergency help in disaster areas. For example, Hong Kong University developed student projects to help re-structuring in Haiti.

5. Empower students to act as change agents on and beyond campus: Students at the conference requested well-advertised and accessible offices and funds to help them launch campus sustainability projects. Information on campus infrastructure and operations should be accessible to students. They also recommended that university management should seek to establish student-run sustainability audits of Universities – and to make available a tool kit for students to run such audits.

6. Design for exchange: Exchange between campus and city requires well-connected infrastructures and social networks. A prerequisite for exchange in practice is socially robust design processes to structure the interface between campus and city, which engage representatives of the University, city communities, planners and engineers.

7. Governance for exchange: Japanese research suggests that local and regional policies for environmental conservation, remediation, and economic revitalisation work well if they rely on formalised Town-University Partnerships that are based on legal agreements and involve annual reporting. The best performing projects combine environmental conservation, social integration and spatial planning considerations. Successful examples include projects promoting low-carbon mobility, gardening in the city, and the establishment of green businesses helping social inclusion of socially disadvantaged.

8. Develop infrastructures that teach: The best building technology fails without user engagement. Eye-catching demonstration projects of environmental technologies and visible monitoring efforts can be combined with other awareness raising design measures to foster behavioural change at the individual and institutional level. Examples include visible solar panels, monitoring screens, visible recycling. Development of such measures can be combined with research and teaching.

9. Combine experiential learning with civic engagement projects: Student projects can address local issues or emergency help in disaster areas. For example, Hong Kong University developed student projects to help re-structuring in Haiti.

10. Empower students to act as change agents on and beyond campus: Students at the conference requested well-advertised and accessible offices and funds to help them launch campus sustainability projects. Information on campus infrastructure and operations should be accessible to students. They also recommended that university management should seek to establish student-run sustainability audits of Universities – and to make available a tool kit for students to run such audits.
OUTLOOK ON PRIORITIES
FOR 2011 AND BEYOND

1 FROM MAPPING TO TARGETS
In the year 2010 we have developed robust monitoring systems for energy consumption, water consumption and waste production. Based on three years of monitoring data we will be able to develop targets for future years.

2 BETTER CONNECTING USERS WITH THE BUILT ENVIRONMENT
Developing infrastructures that teach will help to reap all benefits from improving building technology. User engagement is key. We will develop web sites and campaigns to make our efforts on monitoring and target setting more visible to the campus staff and student communities to foster behavioural change at the individual and institutional level.

3 DEVELOP FURTHER CROSS-FACULTY-COURSES
On key themes of sustainable development and connect these with initiatives to improve campus, internship opportunities and research and civic engagement projects.

4 EMPOWER STUDENTS TO ACT AS CHANGE AGENTS ON AND BEYOND CAMPUS
Information on campus infrastructure and operations should be visible and accessible to students. We will explore what it takes to establish student run sustainability audits of Universities — and to make available a tool kit. This could be one project proposed for development under ISCN.
The three tables below summarise UL sustainable development goals, initiatives and results in the years 2009 and 2010 for each of the three principles of the ISCN-GULF CHARTER, respectively.

Table A1 Principle 3: Sustainability performance of buildings on campus

A sustainable campus infrastructure is governed by respect for natural resources and social responsibility, and embraces the principle of a low carbon economy. Concrete goals embodied in individual buildings can include minimizing environmental impacts (such as energy and water consumption or waste), furthering equal access and optimizing the integration of built and natural environment. To ensure buildings on campus meet these goals in the long term, and in a flexible manner, useful processes include participatory planning (integrating end-users such as Faculty, staff, and students) and life-cycle costing (taking into account future cost savings from sustainable construction).

Table A2 Principle 2: Campus wide Master planning and target setting

Sustainable campus development needs to rely on forward-looking planning processes that consider the campus as a whole, and not just individual buildings. These processes can include comprehensive master planning with goals for impact management (for example, limiting use of land and other natural resources and protecting ecosystems), responsible operation (for example encouraging environmentally compatible transport modes and efficiently managing urban flows), and social integration (seamlessly incorporating diversity, creating indoor and outdoor spaces for social exchange and shared learning, and supporting ease of access to commerce and services). Such integrated planning can profit from including users and neighbors, and can be strengthened by organization-wide target setting (for example greenhouse gas emission goals).

Table A3 Principle 1: Inclusion and social responsibility

Sustainable campus development needs to rely on forward-looking planning processes that consider the campus as a whole, and not just individual buildings. These processes can include comprehensive master planning with goals for impact management (for example, limiting use of land and other natural resources and protecting ecosystems), responsible operation (for example encouraging environmentally compatible transport modes and efficiently managing urban flows), and social integration (seamlessly incorporating diversity, creating indoor and outdoor spaces for social exchange and shared learning, and supporting ease of access to commerce and services). Such integrated planning can profit from including users and neighbors, and can be strengthened by organization-wide target setting (for example greenhouse gas emission goals).
Table A3 Integration of facilities, research, education, and outreach as a “living laboratory” for sustainability

<table>
<thead>
<tr>
<th>Principle 3: To align the organization’s core mission with sustainable development, facilities, research, and education should be linked to create a “living laboratory” for sustainability.</th>
</tr>
</thead>
</table>

On a sustainable campus, the built environment, operational systems, research, scholarship, and education are linked as a “living laboratory” for sustainability. Users (such as students, faculty, and staff) have access to research, teaching, and learning opportunities on connections between environmental, social, and economic issues. Campus sustainability programs have concrete goals and can bring together campus residents with external partners, such as industry, government, or organized civil society. Beyond exploring a sustainable future in general, such programs can address issues pertinent to research and higher education (such as environmental impacts of research facilities, participatory teaching, or research that transcends disciplines). Institutional commitments (such as a sustainability policy) and dedicated resources (such as a person or team in the administration focused on this task) contribute to success.

Table 3: Priority topics and initiatives for campus sustainability

<table>
<thead>
<tr>
<th>Priority topics (with units of measurement)</th>
<th>Objectives and targets (for reporting year, for the following year, and/or beyond)</th>
<th>Key initiatives (for reporting year, and/or planned for the following year and beyond)</th>
<th>Performance 2009</th>
<th>Performance 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Integration</td>
<td>Develop 3 interdisciplinary courses fostering problem-solving skills for sustainable development and awarding a diploma in sustainable development by 2014.</td>
<td>Start development of first course. --</td>
<td>A first interdisciplinary course “Science and Citizens meet Challenges of Sustainable Development” open to all students from the UL and civil society starts in the summer semester 2010/2011.</td>
<td></td>
</tr>
<tr>
<td>Research projects on sustainable facilities and operations</td>
<td>Improve energy efficiency of building operation. The Service Infrastructure & Logistique is working closely with the engineering group on non-adapted ventilation of class rooms and identifying the best energy efficient lighting systems.</td>
<td>Implemented movement triggered lightning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICT operations</td>
<td>Develop student research projects to improve and monitor the energy efficiency of the ICT operations.</td>
<td>--</td>
<td>Started developing student-led research along 3 strands: • Informatics • Engineering • Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>Commitments and resources for campus sustainability</td>
<td>The UL strategic action plan on sustainable development (2010–2013) implementing activities.</td>
<td>In March 2009 the UL created a cell dedicated to sustainable development. The cell’s role is to see to the implementation of this action plan, involving students and staff.</td>
<td>May – appointed 50% head September hired 50% secretary 2 students working under contract.</td>
<td>50% head 50% secretary. On average 3 students working under contract at any time.</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

Achievements described in this report have relied on close collaboration of Members of the Working Group on Sustainable Development and the Cell for Sustainable Development, including all students working for the Cell: Monir Bruchhaage (BA in Psychology, University of Luxembourg), Rydia Bêrjan (MA in Spatial Development and Analysis, University of Luxembourg), Yann Kampf (In national BA of Science and Engineering – Physics, Staat-Lor-Lux, Universitaires de Saarland, Nancy and Luxembourg), Julien Caron (Junior Researcher, Engineering Sciences – Construction, University of Luxembourg), Zhamara Sokapôr (MA Urbanisme – Ameangement et Développement du Territoire, University of Strasbourg), Francois Sprumont (MA in Spatial Development and Analysis, University of Luxembourg). Danielle Schwartz-Lajeunesse (Administrative act of the cell for sustainable development, University of Luxembourg) has supported all activities tirelessly. This report has benefitted from professional advice of Dirk Hans (Wissenschaftskommunikation, Dortmund) and Britta Schützer (Head of communications department, University of Luxembourg).

Pierre Fagot, Head of the Logistic and infrastructure department and his team proactively implemented sustainability measures, as well as monitoring and reporting activities. Without their high level of engagement, sustainable development on our campus would simply be impossible.

THIS REPORT

This is the first ISCN-GULF Charter report to be completed by the University of Luxembourg. The information included presents aggregate results for the entire University, which includes the three faculties on the three campuses operated by the University. Most of the goals and objectives are based on the strategic action plan on sustainable development for the UL (2010 – 2013). This strategy among other things also sets out a coherent approach to how the UL can work toward its commitment under the ISCN-GULF Charter to develop targets under each Charter principle, and monitor and report on them.

Dr Ariane König

ananc.koenig@uni.lu

Head of Sustainable Development and Advisor to the President

www.uni.lu/sustainability

Sustainable Development at the University of Luxembourg.
